

Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Root System • Anchor plant

- · Absorb water / nutrients
- Store surplus sugars
- · Transport materials from / to shoot
- Produce hormones (minor site)
- House soil fungi / microorganisms

Groups of Flowering Plants:		The second	
1	set so	1) Monocots 2)	Dicots
Las	A THE SE	multiples of threes mu	wer parts in Itiples of fours ves
	*		aves oval it-like veins)
	O		scular bundles m ring
赤	奏	Fibrous root Ta system	proot system
	00		nbryo has two ed leaves
(Figure 42.2) Codyledon = seed leaf			

Alright, a quick quiz!

- Form groups if you want, or work alone.
- Get out a sheet of paper
- Tell me what each of the follow pictures are: monocot or dicot?

Plant Growth:

- 1) Indeterminate Growth: Grow throughout life (no stable size)
- 2) Growth occurs at tips of roots / branches

Growth patterns due to cell distribution in plant:

- 1) Meristem Cells: Embryonic cells capable of mitosis
 - Cell division results in plant growthLocated at tips of roots / branches
- 2) Differentiated Cells: Cells specialized in structure and function
 - · Form stable, permanent part of plant

Forms of Plant Growth:

1) Primary Growth:

Apical Meristems: Mitotic cells located at the ends of roots / stems

Responsible for:

- 1) Increased length in roots/stems
- 2) Development of specialized structures (e.g. fruits)

2) Secondary Growth:

Lateral Meristems (Cambia): Mitotic cells lining stems and roots

Responsible for increases in stem/root diameter

Tissue Systems in Plants:

- 1) Dermal Tissue System
 - Outer surface coveringProtection
- 2) Ground Tissue System
 - "Body" of plant
 - Photosynthesis; storage; support
- 3) Vascular Tissue System
 - "Vessels" throughout plant
 - · Transports materials (e.g. water)

Dermal Tissue System (Outer Covering of Plant):

- 1) Epidermal Tissue:
 - Forms outermost layer of herbaceous plants (epidermis)
 - Cuticle: Waxy covering on above ground structures
 Reduces water evaporation
 - · Inhibits microorganism invasion
 - Root Hairs: Extensions from root surface
 Increase absorptive area of root
- 2) Peridermal Tissue (periderm):
 - Found only in woody plants ("bark = dead cells")
 - · Offers protection; support

Ground Tissue System ("Body" of Plant):

- 1) Parenchyma (most abundant):
 - Thin-walled cells; living at maturity
 - Perform metabolic activities:
 - Photosynthesis; hormone secretion; sugar storage
- 2) Collenchyma:
 - · Thick-walled walls (uneven); living at maturity
 - Offers support (flexible but strong e.g. celery)

3) Sclerenchyma:

- Thick, hard-walled cells; Dead at maturity
- Offer support (e.g. hemp fibers; nut shells)

Vascular Transport System (Transport materials in plant):

- 1) Xylem (aka Pith):
 - · Conducts water and minerals from roots to shoots:
 - A) Tracheids: Narrow, tube-like cells; dead at maturity
 - B) Vessel Elements: Wide, tube-like cells; dead at maturity
 - Plants vary in relative number of each cell type

Vascular Transport System (Transport materials in plant):

1) Xylem:

- Conducts water and minerals from roots to shoots:
 - A) Tracheids: Narrow, tube-like cells; dead at maturity
 - B) Vessel Elements: Wide, tube-like cells; dead at maturity
 - Plants vary in relative number of each cell type
- 2) Phloem
 - Transports water, sugar, amino acids, and hormones
 - A) Sieve Tubes: Wide, tube-like cells; living at maturityB) Companion Cells:
 - · Sustain sieve tubes
 - Regulate sugar passage into/out of sieve tubes

Stem (Extension to Light): Branch Formation:

- Develop from lateral budsLocated at nodes
- Dormant meristem activated
 Triggered by hormones
- Development similar to stem

Nutrient Acquisition:

Nutrient = Elements essential to life

Plants need:

- 1) Carbon (from CO_2 ; air uptake)
- 2) Oxygen (from O₂ & H₂O; air/soil uptake)

6) Magnesium/calcium/potassium (soil uptake)

- 3) Hydrogen (from H_2O ; soil uptake)
- 4) Phosphorus (soil uptake)
 5) Nitrogen (soil uptake)

Minerals

- Process for Acquiring Minerals:
- 1) Minerals actively transported into root hairs
 - Requires energy (movement against concentration gradient)
- 2) Minerals diffuse through cytoplasm to pericycle cells
 Cells connected via plasmodesmata

Process for Acquiring Minerals:

- 3) Minerals actively transported into extracellular space of vascular tissue from pericycle cells
- 4) Minerals diffuse down concentration gradient into xylem
 - Via holes in wall of tracheids / vessel tubes

Nutrient Acquisition via Symbiotic Relationships:

Symbiosis = Close association between two different organisms; usually mutually beneficial

1) Fungal mycorrhizae (Root-fungus complex): Mineral acquisition

- Fungus = Helps roots absorb rock-based minerals
- Roots = Provides fungus with sugars & amino acids
- Mycorrhizae mats may allow for between plant communication

Nutrient Acquisition via Symbiotic Relationships:

Symbiosis = Close association between two different organisms; usually mutually beneficial

1) Bacteria (Root-bacteria complex): Nitrogen acquisition

 Roots = Provide bacteria with sugar

 Bacteria = Utilize sugar to fix nitrogen (nitrogen fixation)

- $N_2 \rightarrow \text{Ammonium (NH}_4^+)$
- Ammonium diffuses into roots
- Ammonium diffuses into roots

 Bacteria housed in the cortex of the root (nodules)

How Does Water Move Against Gravity?

Answer: The Cohesion-tension Theory

- 1) Cohesion:
 - Attraction among water molecules holds water together in xylem tubes (chain-like column)
 - Water column as strong as steel wire (same diameter)
- 2) Tension:
 - Water column is pulled up the xylem via evaporation at leaves
 - Evaporation creates concentration gradient (water)
- The flow of water is unidirectional (root to shoot) only shoots can transpire.

Stomata Control Rate of Transpiration:

- Open Stomata = \uparrow water loss; \uparrow CO₂ acquisition
- Closed Stomata = \downarrow water loss; \downarrow CO₂ acquisition
- · Plants need to achieve balance:
 - 1) Light Reception:
 - Light present = stomata open
 - Light absent = stomata closed
 - 2) Carbon Dioxide Concentration:
 - $[\downarrow] CO_2$ = stomata open; $[\uparrow] CO_2$ = stomata closed
 - 3) Water concentration (override all else)
 - [\uparrow] water = stomata open; [\downarrow] water = stomata closed

Sugar Transport:

- Sieve tube fluid = ~ 15% glucose and ~ 85% water
 - Source = Location of sugar production
 - Sink = Location of sugar usage/storage

Pressure-Flow Theory:

- 1) Sucrose synthesized (photosynthesis)
- 2) Sucrose loaded into sieve tube
- Active transport (companion cells)
- 3) Water enters sieve tube (follows sugar)
 - Increases pressure in tube
- 4) Sucrose unloaded at sink
- 5) Water exits sieve tube (follows sugar)
 - Decreased pressure in tube

Hydrostatic

Pressure

Gradient

Drives Flow

Venus Flytrap